Performance analysis of near-earth, lunar and interplanetary optical communication links

Author:

Chen Shun-PingORCID

Abstract

AbstractThe performance of near-Earth, lunar and interplanetary laser optical communications is investigated by using simulation models which were successfully verified in previous projects. The simulation models consider typical mission design parameters like transmit power and operation wavelength for the optical laser transmitters, different apertures of the optical telescope, varying distances between the Earth ground station and the spacecraft terminals, Geiger-mode avalanche photodiodes (APD) or superconducting nanowire single photon detection (SNSPD) receivers, atmospheric disturbances like scintillation and absorption, background noises for the uplink and downlink and appropriate pulse position modulation (PPM) orders. Typical design parameters are those of published ESA (European Space Agency) and NASA (National Aeronautics and Space Administration) missions. The investigations of laser optical communications for various system parameters and different distances between the Earth ground station and the spacecraft could also help to achieve an overview of free space and deep space optical communications for different orbit constellations for future missions with laser optical communication links.

Funder

DEAL Open Access agreement with Springer

Hochschule Darmstadt University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3