Optical properties of iodine-based electrolyte used in bifacial dye-sensitized solar cells

Author:

Abdellatif Sameh O.ORCID

Abstract

AbstractAs third-generation solar cells, dye-sensitized solar cells (DSSCs) can show bifacial harvesting capabilities by utilizing transparent conducting oxides as a counter electrode. Herein, the electrolyte is considered a critical layer from the optical perspective. In this paper, an attempt to estimate the optical properties of Iodine-based electrolytes, typically used in dye-sensitized solar cells, is demonstrated. The refractive index for electrolyte as an effective medium is calculated to be 1.4535 ± 0.005 for an effective thin film of 33.4 ± 0.5 μm thickness, using the near-infrared Fabry–Perot resonances. The extinction (absorption and scattering) and dispersion spectra for the prepared electrolyte were fitted using Lorentz–Dude (LD) model. Finally, the utility of the extracted optical parameters was examined through a finite difference time domain solver, Massachusetts Institute for Technology Electromagnetic Equation Propagation. The simulated optical transmission spectrum perfectly agreed with the measured spectrum with less than 0.1% root–mean–square error. The demonstrated attempt to accurately estimate the refractive index of electrolyte used in DSSCs fabrication may impacted theoreticians who are interested with the optoelectronic modelling of such electrochemical cells, as well as those dealing with optoelectronic devices informatics.

Funder

Science and Technology Development Fund

British University in Egypt

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3