Performance evaluation of PDM/SAC-OCDMA-FSO communication system using DPS code under fog, dust and rain

Author:

Abd El-Mottaleb Somia A.,Métwalli Ahmed,ElDallal Tarek A.,Hassib Mostafa,Fayed Heba A.,Aly Moustafa H.

Abstract

AbstractA new hybrid polarization division multiplexing (PDM) spectral amplitude coding optical code division multiple access (SAC-OCDMA) is proposed for free space optical (FSO) for capacity enhancement. Two polarization signals are utilized; one is x-polarization and carries three different channels at 0° azimuthal angle while the other is y-polarization at 90° azimuthal angle, and carries the same three channels. Each channel is assigned with a diagonal permutation shift (DPS) code and carries 10 Gbps. The suggested system is simulated, and its performance is evaluated in terms of maximum allowable number of users, propagation range, bit error rate (BER), Q-factor, and received power for the different channels under various fog, dust storm, and rain scenarios. The reported results indicate that the system can support a signal travelling up to 2, 0.9, and 1.3 km, respectively, under light fog (LF), light dust (LD), and light rain (LR). As the level of these weather conditions is increased from light to moderate, the FSO link length decreases to 1.3, 0.25, and 1.8 km under medium fog (MF), medium dust (MD), and medium rain (MR), respectively. Furthermore, the shortest propagation range is achieved as the level of weather conditions becomes heavy, where the FSO link range becomes 1, 0.095, and 1.1 km under heavy fog (HF), heavy dust (HD), and heavy rain (HR), respectively. All these ranges are considered at BER ≤ 10–3 and a received power ≤ − 27 dBm with 60 Gbps overall data transmission. This new hybrid FSO system is suggested to be implemented in desert areas that affects by dust storms and in 5G wireless transmission communications.

Funder

Arab Academy for Science, Technology & Maritime Transport

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3