Modelling and experimental characterization of double layer InP/AlGaInP quantum dot laser

Author:

Abbas Radwa A.,Sabry Yasser M.,Omran Haitham,Huang Zhihua,Zimmer Michael,Jetter Michael,Michler Peter,Khalil Diaa

Abstract

AbstractSpectrum of an InP/AlGaInP self- assembled double-layer quantum dot (QD) laser fabricated by metal–organic vapor-phase epitaxy is theoretically and experimentally investigated. A bimodal QD size distribution (small and large QD groups) was detected which is formed during the fabrication. A model is proposed based on rate equations accounting for the superposition of two inhomogeneous QD groups. The total output power and the power spectral density (PSD) of the fabricated QD laser are experimentally characterized at room temperature. The output spectrum is segmented into the sum of two Gaussians curves (super Gaussian) belonging to the small and large QD groups. The peak PSD and the spectral width of each group are extracted and their dependency on the injected current density is analysed. The peak of the large QDs is found to be dominant at small current while the peak of the small QDs dominated at high current alongside a reduction in its spectral width leading to lasing based on them. This behaviour is attributed to the saturation of the large QDs energy levels due to its relatively long radiative lifetime. The experimental analysis is in a good agreement with the theoretical results.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3