Abstract
AbstractWe show the importance of using a thermodynamically consistent flux discretization when describing drift–diffusion processes within light emitting diode simulations. Using the classical Scharfetter–Gummel scheme with Fermi–Dirac statistics is an example of such an inconsistent scheme. In this case, for an (In,Ga)N multi quantum well device, the Fermi levels show an unphysical hump within the quantum well regions. This result originates from neglecting diffusion enhancement associated with Fermi–Dirac statistics in the numerical flux approximation. For a thermodynamically consistent scheme, such as the SEDAN scheme, the humps in the Fermi levels disappear. We show that thermodynamic inconsistency has far reaching implications on the current–voltage curves and recombination rates.
Funder
Leibniz-Gemeinschaft
Weierstraß-Institut für Angewandte Analysis und Stochastik, Leibniz-Institut im Forschungsverbund Berlin e.V.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献