Abstract
AbstractAllelopathy is a phenomenon by which plants positively or negatively affect neighboring plants by releasing allelopathic compounds. These allelochemicals are secondary metabolites found in different concentrations in shoots, roots, leaves, flowers, and even pollen grains. Allelochemicals have potential as natural bioherbicides for controlling weeds when applied in the form of extracts or through intercropping, cover cropping, and mulching. The present study was conducted to investigate the allelopathic potential of Ficus nitida leaves against Echinochloa crus-galli L. and Corchorus olitorius L weeds associated with sunflower plant via two application methods (mixing of F. nitida leaf powder with soil and foliar spray of F. nitida leaf powder alcoholic extract). Two pot experiments were carried out for the two summer seasons of 2020 and 2021 in the greenhouse of the National Research Centre (NRC), Dokki, Giza, Egypt. Nine treatments were applied in a completely randomized block design. Three treatments were applied before sowing, namely F. nitida leaf powder was mixed with the soil at rates of 15, 30, and 45 g/pot. The other three treatments of alcoholic leaf powder extract of F. nitida were sprayed twice on both plants and weeds at 10, 20, and 30% (w/v) concentrations. Additionally, three check treatments—healthy (sunflower only), unweeded, and both weeds only—were applied for comparison. The recorded results showed that F. nitida had an allelopathic bioherbicidal effect on both weeds. By increasing the concentration of F. nitida extract, the bioherbicidal potential increased. Moreover, the recorded results showed that foliar spray of alcoholic extract at 30% concentration was the superior application method for controlling weeds. Mixing of F. nitida leaf powder at 45 g/pot ranked second after this superior treatment. A noticeable result is that these two superior treatments improved sunflower growth parameters and yield traits. Quantitative estimation of phenolic compounds and flavonoids demonstrated that the concentration of these allelochemicals is higher in alcoholic extract than in water extract. Moreover, phenolic acid concentrations as detected by high-performance liquid chromatography fractionation are higher in alcoholic extract than in water extract.
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences
Reference38 articles.
1. Ahmed SAA, Messiha NK, El-Rokiek KG, Mohamed SA, El-Masry RR (2016) The allelopathic efficiency of two Brassicaceae plant seeds in controlling weeds associating sunflower plants. Res J Pharm Biol Chem Sci 7(5):158–165
2. Ameen HH, Soliman GM, El-Wakeel MA, Elkelany US, Mohamed SA (2020) Impact of some genetically improved rhizobacteria in controlling Meloidogyne incognita and two weeds infecting Solanum lycopersicum seedlings under greenhouse conditions. Plant Arch J 20(1):2153–2160
3. Bajwa AA, Jabran K, Shahid M, Ali HH, Chauhan BS, Ehsanullah (2015) Eco-biology and management of Echinochloa crus-gali. Crop Prot 75:151–162
4. Bertin C, Yang X, Wetson LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83. https://doi.org/10.1023/A:1026290508166
5. Bertin C, Harmon R, Akaogi M, Weidenhamer JD, Weston LA (2009) Assessment of the phytotoxic potential of m‑tyrosine in laboratory soil bioassays. J Chem Ecol 35:1288–1294. https://doi.org/10.1007/s10886-009-9707-4
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献