The Changes in Yield Response Factor, Water Use Efficiency, and Physiology of Sunflower Owing to Ascorbic and Citric Acids Application Under Mild Deficit Irrigation

Author:

Saudy Hani S.ORCID,El-Bially Mohamed E.,Hashem Fadl A.,Shahin Mostafa G.,El-Gabry Yasser A.

Abstract

AbstractUnder arid and semi-arid climates, adopting the appropriate tools for alleviating water deficit impacts is a critical factor that affects the physiological characteristics and yield of sunflower. Therefore, in order to find promising field practices in sunflower cultivation, the strip plots design in randomized complete block arrangement was used to examine the effects of two irrigation regimes as 100% (FI) and 85% (DI) of crop evapotranspiration and five antioxidant treatments on physiological and agronomic traits, yield response factor, and irrigation water use efficiency (IWUE) of sunflower. The antioxidant treatments involved two rates of ascorbic acid (150 and 300 mg L−1) and two rates of citric acid (250 and 500 mg L−1), in addition to the check treatment (tap water). The study was conducted for two growing seasons of 2019 and 2020 at the Experimental Farm of Ain Shams University, Egypt, located in a semi-arid environment. Findings showed that exogenous application of higher rate of ascorbic acid, i.e. 300 mg L−1 with FI exhibited the highest increase of chlorophyll a, chlorophyll b and the lowest proline content compared to other interaction treatments. Seed yield was significantly higher with FI plus ascorbic acid 300 mg L−1 and DI plus ascorbic acid 300 mg L−1 treatments than with their counterpart check treatment in both growing seasons. Under DI, IWUE was improved with antioxidant-treated plants compared to untreated plants. Yield response factor as an indicator of crop tolerance to drought was higher than the unit (> 1) under all ascorbic acid and citric acid levels. It could be concluded that ascorbic acid and citric acids partially mitigated the reductions in growth and yield caused by low water supply. However, yield response factor demonstrated that the crop is still sensitive to drought. Thus, other applicable patterns should be adopted to increase the yield potential of sunflower for counteracting the adverse impacts of drought.

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

Reference82 articles.

1. Abd El-Mageed TA, Mekdad AAA, Rady MOA, Abdelbaky AS, Saudy HS, Shaaban A (2022) Physio-biochemical and agronomic changes of two sugar beet cultivars grown in saline soil as influenced by potassium fertilizer. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-022-00916-7

2. Abd-Elrahman SH, Saudy HS, Abd El-Fattah DA, Hashem FA (2022) Effect of irrigation water and organic fertilizer on reducing nitrate accumulation and boosting lettuce productivity. J Soil Sci Plant Nutr 22:2144–2155. https://doi.org/10.1007/s42729-022-00799-8

3. FAO irrigation and drainage paper;RG Allen,1998

4. Amin MA, Ismail MA (2015) Effect of indole butyric, arginine, cyanocobalamine (B12), ascorbic acid and their interactions on growth, yield and some metabolic constituents of sunflower plants. Int J Adv Res Biol Sci 2:154–162

5. AOAC (2012) Official method of analysis: Association of Analytical Chemists, 19th edn. AOAC, Washington

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3