Author:
Hassanzadeh Mahsa,Zarkami Rahmat,Sadeghi Roghayeh
Abstract
AbstractThe Anzali international wetland is a valuable habitat to a wide variety of aquatic flora and fauna. This wetland ecosystem is being threatened due to various pollutants particularly the heavy metals discharging from different point and non-point sources. Concentration of various heavy metals (Cr, Pb, Hg, Cu, Zn, Cd, Ag and Ti) was examined in the water body and Azolla filiculoides (an exotic fern in the Anzali wetland). The samples regarding water and A. filiculoides were randomly carried out in three parts of the wetland (eastern, central and western parts) in May 2015. After preparing and digesting the samples, the concentration of the heavy metals was measured using ICP OES method. The obtained results showed that the concentration of Zn in water and A. filiculoides samples was higher than other heavy meals in all parts of the wetland (p < 0.05). Overall, concentration of the heavy metals was significantly higher in the eastern part of the wetland than other two sampling locations (p < 0.05). Also with comparing the concentration of the heavy metals in water and A. filiculoides, it was found that all examined metals (except Cd and Ag) in A. filiculoides had significantly higher concentration than water sample, while Cd and Ag in water and A. filiculoides did not have a significant difference with each other. Based on the results, it can be concluded that A. filiculoides can effectively absorb Cr, Pb, Zn, Hg, Cu, Cd, Ag and Ti so that it might be used as a valuable species for the bioremediation and the removal of heavy metals from the wetland.
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology
Reference48 articles.
1. Afdal M (2008) Cyanobacteria as a removal agent of heavy metal. Thesis of School of Graduate Study University Putra, Malaysia
2. Ahmad MK, Islam S, Rahman S, Haque MR, Islam MM (2010) Heavy metals in water, sediment and some fishes of Buriganga River, Bangladesh. Int J Environ Res 4:321–332
3. AitAli N, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111
4. Almeida CMR, Mucha AP, Teresa Vasconcelos M (2011) Role of different salt marsh plants on metal retention in an urban estuary (Lima estuary, NW Portugal). Estuar Coast Shelf Sci 91:243–249
5. APHA/AWWA/WEF (1998) Standard methods for the examination of water and wastewater, 19th ed. Washington, DC, USA
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献