Parallelization of AMALGAM algorithm for a multi-objective optimization of a hydrological model

Author:

Besalatpour Ali A.ORCID,Pourreza-Bilondi MohsenORCID,Aghakhani Afshar Amirhosein

Abstract

AbstractA calibration procedure is essential step to achieve a realistic model simulation particularly in hydrological model which simulates water cycle in the basin. This process is always faced with challenges due to selection of objective function and highly time-consuming. This study aimed to take advantage of parallel processing to accelerate the computations involved with simulation process of hydrologic model linked with the multi-objective optimization algorithm of AMALGAM for multi-site calibration of SWAT hydrologic model parameters. In order to illustrate how meaningful SWAT model calibration trade-off between the four objective functions involved in AMALGAM optimization program, the Pareto solution sets were provided. Furthermore, it is implemented a group of model runs with a number of cores involved (from one to eight) to demonstrate and evaluate the running of parallelized AMALGAM with taking advantages of “spmd” method to decrease the running time of the SWAT model. The results revealed the robustness of the method in reducing computational time of the parameter calibration significantly. This strategy with 4-objective functions focuses on high streamflow (Nash–Sutcliffe coefficient), low streamflow (Box–Cox transformed root–mean–square error), water balance (runoff coefficient error), and flashiness (slope of the flow duration curve error) provided an efficient tool to decide about the best simulation based on the investigated objective functions. This study also provides a strong basis for multi-objective optimization of hydrological and water quality models and its general analytical framework could be applied to other parts of the world.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3