Assessment of sub-200-nm nanobubbles with ultra-high stability in water

Author:

Cho Chan-Hyun,Shin Hye-Ji,Singh Baljinder,Kim Kibeom,Park Myoung-HwanORCID

Abstract

AbstractBubble technology has proven to be an efficient technique of reducing environmental pollution, strengthening water treatment procedures, and increasing production in industrial and agricultural applications. Compared to large bubbles such as macro- or micro-bubbles, nanobubbles (NBs) in liquids have several intriguing properties, including low buoyancy, high mass transfer efficiency, and high reactivity. In particular, NBs smaller than 200 nm are unexpectedly stable. However, determining the underlying mechanism of the stability of NBs in a solution is difficult. Most studies only focus on the temporal changes in the size and surface charge of NBs; the changes in the concentration of NBs are typically ignored. In this study, we investigate the number and stability of high-concentration NBs under various conditions. The results show that the number and concentration of NBs can be maintained at approximately 80–90% under various conditions, such as aging, temperature, centrifugation, shaking, and stirring. In other words, NBs possess significant potential for use in mass production and distribution in bubble technologies.

Funder

National Research Foundation of Korea

Commercializations Promotion Agency for R and D Outcomes

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3