Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review

Author:

Mustapha S.,Ndamitso M. M.,Abdulkareem A. S.,Tijani J. O.,Shuaib D. T.,Ajala A. O.,Mohammed A. K.

Abstract

AbstractIncrease in industrial and anthropogenic activities leads to a decline in water quality. This necessitates the need for the removal of contaminants from industrial and domestic wastewater. Clay minerals are naturally abundant and non-toxic materials that found to be useful for remediation of emerging contaminants from wastewater. This review paper presents an insight into clay, the simplest material (in solgel techniques) for the synthesis of TiO2and ZnO, mechanisms of their reactions, analytical techniques used for characterizations, and their nanocomposites for wastewater treatment. Nanomaterials, such as nanoclay, titanium, and zinc oxide, have offered the opportunities of sequestering variety of pollutants in wastewater. TiO2and ZnO anchored on clay have been found to be good promising sequesters and have been explored for wastewater remediation via nanotechnology. This water treatment method includes adsorption/absorption, photocatalysis, and microbial disinfection. These nanocomposites provide more active surface sites and reduce the agglomeration of the nanoparticles, but leaching has been their shortcomings. To overcome this, the filtration technique may become significant for the removal and avoidance of fouling of wastewater. This can be achieved through the fabrication of nano-based filters using the nanocomposites.

Funder

Tertiary Education Trust Fund

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3