Abstract
AbstractDue to high flow velocity, the spillway surfaces of high-head dams can expose to cavitational damage. The most effective and economical method of protection from this damage is aerated to flow using aerators. In this study, a spillway aerator of the roller-compacted concrete dam of 100 m height was analyzed using two-phase computational fluid dynamic model to overcome the cavitation damage on the spillway surface. The numerical analysis with prototype dimensions was performed for various flow conditions (5223, 3500, 1750 and 1000 m3/s of flow rate), and obtained results were compared with some experimental observation in the literature. Numerical and experimental results indicated that the cavitation occurs on the surface after a certain downstream point based on cavitation indices. The air entrainment rate and air concentrations supplied by means of the aerator were determined to avoid the cavitational damage. While the experimental results can contain considerable scale effect in terms of air entrainment rate owing to, e.g., viscous effects especially for small scales, the numerical models with prototype dimensions gave much more accurate results. In other words, it can be also mentioned that the actual aeration amount is much greater than that obtained from the model experiments. The results based on numerical analysis showed that the aerator device meet air demand to prevent the cavitation damage.
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Aydin MC (2016) Aeration in dam spillway (in Turkish). Türkiye Alim Kitapevi, Saarbrücken
2. Aydin MC, Ozturk M (2009) Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators. Can J Civ Eng 36(5):826–836
3. Aydin MC, Ulu AE, Karaduman Ç (2017) 3D model-prototype comparison of air entrainment by two-phase CFD model. In: 8th International advanced technologies symposium, 19–21 October 2017, Elazığ, Turkey
4. Aydin MC, Ulu AE, Karaduman Ç (2019) Investigation of aeration performance of Ilısu Dam outlet using two-phase flow model. Appl Water Sci 9(4):111
5. Bruschin J (1984) Aeration off-sets for spillway chutes and bottom outlets. In: Symposium on scale effects in modelling hydraulic structures. International Association for Hydraulic Research, Esslingen, Germany, 3–6 September 1984, pp 4.3-1–4.3-4
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献