A hydro-climatic approach for extreme flood estimation in mountainous catchments

Author:

Bashirgonbad MohammadORCID,Moghaddam Nia Alireza,Khalighi-Sigaroodi Shahram,Gholami Vahid

Abstract

AbstractPrediction of rainfall-runoff process, peak discharges, and finally flood hydrograph is essential for flood risk management and river engineering projects. In most previous studies in this field, the precipitation rates have been entered into the models without considering seasonal and monthly distribution. In this study, the daily precipitation data of 144 climatology stations in Iran were used to evaluate the seasonal and monthly pattern of flood-causing precipitation. Then, by determining the rainy seasons and seasonal fit of precipitation with a probabilistic model and using regional precipitation, a semi-distributed conceptual model of rainfall-runoff (MORDOR-SD) was trained and validated using the observed discharge data. Flood prediction was performed using climatic data, modeling of hydrological conditions, and extreme flow data with high performance. According to the results, the Nash–Sutcliffe and Kling–Gupta coefficients were 0.69 and 0.82 for the mean daily streamflow, 0.98 and 0.98 for the seasonal streamflow, 0.98 and 0.94 for the maximum discharges, and 0.57 and 0.78 for low flows, respectively. Moreover, the maximum daily discharges in different return periods were estimated using the results of the MORDOR-SD model, considering the probability distribution function of the probabilistic model of central precipitation (MEWP), the probabilistic model of adjacent precipitation, and probability distribution function of the previous precipitation. Finally, the extreme flows were predicted and compared using different methods including the SCHADEX, regional flood analysis, GRADEX, and AGREGEE. The results showed that the methods GRADEX, AGREGEE, and SCHADEX have the highest performance in predicting extreme floods, respectively.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3