Estimation of reference evapotranspiration based on machine learning models and timeseries analysis: a case study in an arid climate

Author:

Hendy Zeinab M.ORCID,Abdelhamid Mahmoud A.ORCID,Gyasi-Agyei YeboahORCID,Mokhtar AliORCID

Abstract

AbstractWater scarcity is a major challenge for irrigated agriculture, particularly in developing countries where access to meteorological data for calculating reference evapotranspiration (ETo) is limited. Thus, this study explores the potential of two machine learning models (random forest (RF) and long short-term memory (LSTM)) and autoregressive integrated moving average (ARIMA) to forecast ETo. The investigation was conducted for four weather stations in Egypt, from 1982 to 2020. The machine learning models were evaluated using four combinations of inputs: maximum and minimum temperature, relative humidity, and wind speed. The best results for both RF and LSTM models were achieved with the first set of inputs that included all four variables at both regional and local scales. For the regional scale, RF and LSTM models achieved R2 values of 0.85 and 0.86, respectively, with RMSE values of 0.69 and 0.68 mm/day. At the local scale, RF and LSTM models exhibited R2 values ranging from 0.92 to 0.95 and 0.93 to 0.95, respectively, while RMSE ranged between 0.38 and 0.46 mm/day and 0.37–0.43 mm/day, respectively. Additionally, ARIMA models were employed for tim series analysis of the same ETo data. ARIMA (2,1,4) and ARIMA (2,1,3) were found to be the most suitable models for the local-scale analysis while ARIMA (2,1,4) was identified as the optimal model for the regional-scale analysis. For the local-scale analysis, R2 values ranged from 0.86 to 0.91 and RMSE values ranged from 0.26 to 0.38. The regional scale analysis yielded an R2 value of 0.89 and an RMSE value of 0.58 mm/day. The developed models can be used in places where meteorological data for forecasting ETo are limited.

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3