Prediction of groundwater level fluctuations using artificial intelligence-based models and GMS

Author:

Mohammed Khabat Star,Shabanlou SaeidORCID,Rajabi Ahmad,Yosefvand Fariborz,Izadbakhsh Mohammad Ali

Abstract

AbstractGroundwater level fluctuations are one of the main components of the hydrogeological cycle and one of the required variables for many water resources operation models. The numerical models can estimate groundwater level (GWL) based on extensive statistics and information and using complex equations in any area. But one of the most important challenges in analyzing and predicting groundwater depletion in water management is the lack of reliable and complete data. For this reason, the use of artificial intelligence models with high predictive accuracy and due to the need for less data is inevitable. In recent years, the use of different numerical models has been noticed as an efficient solution. These models are able to estimate groundwater levels in any region based on extensive statistics and information and also various field experiments such as pumping tests, geophysics, soil and land use maps, topography and slope data, different boundary conditions and complex equations. In the current research, first, by using available statistics, information and maps, the groundwater level fluctuations of the Sonqor plain are simulated by the GMS model, and the accuracy of the model is evaluated in two stages of calibration and validation. Then, due to the need for much less data volume in artificial intelligence-based methods, the GA-ANN and ICA-ANN hybrid methods and the ELM and ORELM models are utilized. The results display that the output of the ORELM model has the best fit with observed data with a correlation coefficient equal to 0.96, and it also has the best and closest scatter points around the 45 degrees line, and in this sense, it is considered as the most accurate model. To ensure the correct selection of the best model, the Taylor diagram is also used. The results demonstrate that the closest point to the reference point is related to the ORELM method. Therefore, to predict the groundwater level in the whole plain, instead of using the complex GMS model with a very large volume of data and also the very time-consuming process of calibration and verification, the ORELM model can be used with confidence. This approach greatly helps researchers to predict groundwater level variations in dry and wet years using artificial intelligence with high accuracy instead of numerical models with complex and time-consuming structures.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3