Azadirachta indica-assisted green synthesis of magnesium oxide nanoparticles for degradation of Reactive Red 195 dye: a sustainable environmental remedial approach

Author:

Kiran ShumailaORCID,Albargi Hasan B.,Afzal Gulnaz,Aimun Ume,Anjum Muhammad Naveed,Qadir Muhammad Bilal,Khaliq Zubair,Jalalah Mohammed,Irfan Muhammad,Abdullah M. M.

Abstract

AbstractA variety of industries employ synthetic azo dyes. However, the biosphere is being damaged by the unused/leftover azo dyes, which pose a danger to all living things. Therefore, treating them to shield the environment from the potential harm of azo dyes is crucial. Bio-sorption is a cheap and effective mode for eliminating toxic dyes in the environment. The current work focused on synthesizing magnesium oxide (MgO) nanoparticles using an aqueous leaf extract of neem (Azadirachta indica). The XRD and SEM analyses of MgO nanoparticles indicated the crystalline nature of MgO nanoparticles with a cubic structure, and the size was around 90–100 nm. FTIR analysis showed the presence of a stretching frequency peak at 550 cm−1, confirming the Mg–O bond. The surface analysis revealed the cluster form of the synthesized nanoparticles. The UV–visible absorption peak for MgO nanoparticles was found at 294 nm and band gap of 4.52 eV. In order to eliminate the Reactive Red 195 dye, MgO nanoparticles were used. At pH 4, 40 °C, 0.02% dye concentration, and 0.003 g/L catalyst amount, the highest degree of decolorization (91%) was seen. Decreased total organic carbon (TOC) and the chemical oxygen demand (COD) percent were 84.33% and 81.3%, respectively. The proposed mechanism of target dye degradation was also investigated. MgO NPs were found to be effective in their catalytic behavior toward the degradation of Reactive Red 195 dye up to five cycles with almost no change in their catalytic activity.

Funder

Deanship of Scientific Research at Najran University

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3