RSM versus ANN for modeling and optimization of magnetic adsorbent based on montmorillonite and CoFe2O4

Author:

Desalegn Yiene MollaORCID,Bekele Endrias Adane,Dagnaw Getamesay Haile,Marye Sisay Asmare,Reta Yared Daniel

Abstract

AbstractA highly resourceful, environmentally benign, and recyclable magnetic montmorillonite composite (MMT/CF) was obtained through a simple one-step hydrothermal method and exhibited excellent Pb (II) removal. The as-synthesized adsorbent was then characterized by XRD, SEM–EDX, FTIR, BET, and TGA-DTA. The operating parameters including adsorbent dosage, initial Pb (II) concentration, solution pH, and time were studied. Also, a comparative approach was formed between response surface methodology (RSM) and artificial neural network (ANN) to optimize and model the removal efficiency of Pb (II) by MMT/CF. The results indicated that the ANN model was more precise and quite trusted optimization tool than RSM in consideration of its higher correlation coefficient (R2 = 0.998) and lower prediction errors (RMSE = 0.851 and ADD = 0.505). Langmuir isotherm provided the best fit to the experimental data, and the maximum adsorption capacity was 101.01 mg/g. Additionally, the kinetic studies showed that the pseudo-second-order model fitted well with the experimental data. The magnetic MMT/CF composite possesses high adsorption capacity and is suitable for reuse. Therefore, this study shows that MMT/CF composite can be a potential adsorbent in Pb (II) uptake from aqueous media.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3