Magnetite-impregnated biochar of parthenium hysterophorus for adsorption of Cr(VI) from tannery industrial wastewater

Author:

Fito JemalORCID,Abewaa Mikiyas,Nkambule Thabo

Abstract

AbstractThe tannery industry inevitably generates toxic and catastrophic wastewater, which results in a huge threat to public health and water resources. Therefore, this work aimed to synthesize parthenium hysterophorus-based biochar–Fe3O4 composite for removal of Cr(VI) from tannery wastewater under 34 full factorial experimental designs of the Box–Behnken, which was analyzed using response surface methodology under four independent factors of pH (3, 6, and 9), initial Cr(VI) concentrations (40, 70, and 100 mg/L), contact times (30, 60, and 90 min), and adsorbent doses (20, 60, and 100 mg/100 mL). This composite adsorbent was described by a high BET surface area of 237.4 m2/g, XRD prominent peaks, SEM morphology corroborate and FTIR multifunctionalities of O–H at 3296 cm−1, the vibration of ketone C–OH at 1240 cm−1, and the vibration of C–O–C at 1147 cm−1 and Fe–O stretching at 542 cm−1. The maximum Cr(IV) removal efficiency of 91.8% was recorded at an initial Cr(VI) concentration of 40 mg/L, pH of 3, adsorbent dose of 100 mg/100 mL, and a contact time of 90 min, whereas the minimum Cr(VI) removal of 17.3% was observed at an initial Cr(VI) concentration of 100 mg/L, 20 mg/100 mL of adsorbent dose, pH of 9, and contact time of 30 min. The concentration of Cr(VI) in real wastewater was determined to be 85.13 mg/L and its remediation was found to be 81.8%. Langmuir’s model was the best fit with experimental data at R2 0.99 and qmax 400 mg/g, showing that the adsorption process was homogenous and monolayer. In conclusion, the adsorption results were encouraging, and biochar–Fe3O4 appears to be a potential candidate for Cr removal from wastewater.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3