The effect of electrocoagulation (EC) on total arsenic, arsenite (As3+) and arsenate (As5+) species removal from model groundwater investigating toxicity and sludge characteristic

Author:

Demirel Tuğçe,Özmen Fadime KaraerORCID,Yavuz Yusuf,Koparal Ali Savaş

Abstract

AbstractThis study showed that the model groundwater containing As3+ and As5+ species was successfully treated with electrocoagulation (EC) first time in the literature investigating toxicity reduction, inorganic arsenic species and detailed sludge characterization. The arsenic removal from model groundwater with 1000 µg/l total arsenic containing equal arsenite (As3+) and arsenate (As5+) concentration was examined by the EC treatment optimized with following parameters; current density (5.0, 7.5 and 10.0 mA/cm2) supporting sodium sulfate electrolyte amount (10, 20 and 30 mM Na2SO4) and initial water pH (3, 6 and 9). In EC treatment, the 99.87% arsenic removal was obtained with 10 mA/cm2, 10 mM Na2SO4 at pH 3 after 40 min supplying 1.44 μg/l effluent As concentration lower than the WHO limit for drinking water. Through transformation mechanisms of more toxic As3+ to less toxic and easily settled As5+ according to As speciation analysis, the toxicity of the model groundwater was successfully decreased in parallel with total arsenic, As3+ and As5+ removal during EC. The precipitated Al(OH)3 and Al2O3 coagulants were the main peaks in the FTIR-ATR spectrum as well as As(III)–O vibration observed between 717 and 721 cm−1 peaks and As(V)–O vibration dominated 899 and 972 cm−1 peaks were detected in the produced sludge after the EC. The SEM–EDS morphological analysis was demonstrated that the sludge was consisted of mostly amorphous structure aggregated size range of 200 μm–2 mm, relatively uniform cake including O, Al, As, Na, and S.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3