Numerical model of seepage flows by reformulating finite element method based on new spherical Hankel shape functions

Author:

Farmani Sajedeh,Ghaeini-Hessaroeyeh MahnazORCID,Hamzehei-Javaran Saleh

Abstract

AbstractThe water penetration in soil is investigated numerically using the finite element method (FEM) in a novel way. In the suggested method, new spherical Hankel shape functions are used and the finite element method is reformulated based on them. These new functions are obtained from the first and second kind of Bessel functions. The properties of Hankel shape functions lead to having more accuracy and robustness for the proposed method with low number of elements. To validate the suggested approach, at first, a boundary value problem is solved and the results are compared with the available analytical solution. Then, in order to prove the efficiency and applicability of the present model in the seepage problems, five examples including saturated and unsaturated flow in porous media are studied and the hydraulic head is calculated. Afterward, the results obtained from the classical and new method are compared together. The comparisons indicate that the suggested method with the low number of elements is more precise than the classic FEM with the same mesh.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3