Implications of chemical agents and nanofluids coupled with carbon dioxide to improve oil recovery factor

Author:

Luo Zixuan,Zhang Xiangchun,Rizwan Ali,Shafieezadeh M. Mehdi

Abstract

AbstractIn this study, we experimentally investigated the effects of chemically enhanced oil recovery methods containing hydrolyzed polyacrylamide (HPAM), surfactant–hydrolyzed polyacrylamide (SHPAM), surfactant nanofluids (SNF), that is, coupled with carbon dioxide (CO2) and water chase injection to measure enhanced oil recovery methods in a sandstone reservoir. To proceed with the experiments, we performed four flooding tests at the simulated reservoir temperature of 70 °C. The sand packs were saturated with oil to establish the irreducible water saturation (Swr). Then, the fluid flow in sand packs remained undistributed for about 5 days to obtain the 1.5 pore volume (PV). We observed that the pressure drop had small fluctuations when there was waterflooding (until 1.5 PV), and after injecting the chemical agents, the pressure drop had a sharp rise. It is indicated that the chemical solution has implemented higher pressure drops (significant energy efficiency) to displace the oil instead of water. The maximum oil recovery factor was about 53% and 59% when HPAM and SHPAM solution displaced oil after waterflooding, respectively; however, it is observed that water chase flooding recovered about 8% and 14% of remaining oil in place while CO2 has increased only 3% and 5%, respectively. SNF solution can provide more oil recovery factors. It is about 72% (SNF with 0.5 wt%) and 67% (SNF with 1 wt%). We observed that water chase flooding recovered about 20% of oil in place while CO2 increased by only 8%. It was concluded that the SNF solution with 0.5 wt% tends to adhere to the water–CO2 and causes to improve oil recovery factor after SNF injection. Therefore, SNF is the optimum enhanced oil recovery method among other chemical agents. On the other hand, with the decrease in CO2 flow rate and increase in silica nanoparticles slug size, pressure drop has started to decrease in higher pore volume injections, indicating that larger volumes of CO2 can be stored in sand packs. However, by increasing the CO2 flow rate and decreasing silica nanoparticles slug size, CO2 can escape easily from the sand pack.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3