Investigating dam reservoir operation optimization using metaheuristic algorithms

Author:

Lai Vivien,Essam Yusuf,Huang Yuk Feng,Ahmed Ali NajahORCID,El-Shafie Ahmed

Abstract

AbstractThe optimization of dam reservoir operations is of the utmost importance, as operators strive to maximize revenue while minimizing expenses, risks, and deficiencies. Metaheuristics have recently been investigated extensively by researchers in the management of dam reservoirs. But the animal-concept-based metaheuristic algorithm with Lévy flight integration approach has not been used at Karun-4. This paper investigates the optimization of dam reservoir operation using three unexplored metaheuristics: the whale optimization algorithm (WOA), the Levy-flight WOA (LFWOA), and the Harris hawks optimization algorithm (HHO). Utilizing a time series data set on the hydrological and climatic characteristics of the Karun-4 hydroelectric reservoir in Iran, an analysis was conducted. The objective functions and constraints of the Karun-4 hydropower reservoir were examined throughout the optimization procedure. HHO produces the best optimal value, the least-worst optimal value, the best average optimal value, and the best standard deviation (SD) with scores of 0.000026, 0.001735, 0.000520, and 0.000614, respectively, resulting in the best overall ranking mean (RM) with a score of 1.5 at Karun-4. Throughout the duration of the test, the optimized trends of water release and water storage indicate that HHO is superior to the other investigated metaheuristics. WOA has the best correlation of variation (CV) with a score of 0.090195, while LFWOA has the best convergence rate (3.208 s) and best CPU time. Overall, it can be concluded that HHO has the most desirable performance in terms of optimization. Yet, current studies indicate that both WOA and LFWOA generate positive and comparable outcomes.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3