Potential interplay of Uranium with geochemical variables and mineral saturation states in groundwater

Author:

Chandrasekar Thivya,Sabarathinam Chidambaram,Viswanathan Prasanna Mohan,Rajendiran ThilagavathiORCID,Mathivanan Mahalakshmi,Natesan Devaraj,Samayamanthula Dhanu Radha

Abstract

AbstractUranium (U) is formed by the interaction of groundwater in aquifer and the surrounding rocks. The area chosen for this study is a hard rock terrain of various lithology in South India, which releases U in groundwater and affect the groundwater quality. Hence, this study was conducted to understand the geochemistry and temporal variations of U in groundwater with respect to saturation state of minerals for different seasons namely Pre-monsoon (PRM), Northeast monsoon (NEM), Southwest monsoon (SWM) and Post-monsoon (POM). A total of 216 groundwater samples were collected, representing various lithology (Fissile hornblende biotite gneiss, Charnockite, Quartzite, Granite and Flood Plain Alluvium) in the study area. The collected samples were analyzed for physical parameters such as Electrical conductivity, Total dissolved solids, pH and major ions. U was measured using Laser Fluorimeter. The study infers that weathering in SWM, ion exchange in PRM and POM and anthropogenic process in NEM were the three major processes that could dominate the hydrogeochemistry of U. The higher concentration of U has been highlighted, and the water–rock interaction has been studied to know the sources of origin and it has been plotted through bivariate and ternary diagrams. The saturation index study was made and calculated for uranium, carbonate, sulfate, silicate and phosphate minerals using PHREEQC Programme. Uraninite and Coffinite are the dominant saturated states of U minerals which tend to attain near saturation to saturation state irrespective of seasons. With the increase in U concentration irrespective of seasons, it was noticed that the saturation state of minerals is also increasing. Overall, the weathering process and the lithological impact are the sources for higher concentration of U and their minerals occurring in the study area. The outcome of the study will help the policy makers for sustainable management to safeguard the groundwater resource in this region.

Funder

University Grants Commission

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3