Experimental investigation on bed shear stress distribution in the roughened compound channel

Author:

Abbaspour AkramORCID

Abstract

AbstractThe roughness in the floodplains in a compound canal and its impact on hydraulic parameters such as the shear stress and their estimation are one of the problems that have attracted the attention of engineers. In this research, the aim is to investigate the effect of artificial on the floodplain of the compound channel on hydraulic parameters. In experiments, slope of channel bed was 0.0015 and three different discharges have been used. The four types of rigid roughness were used to investigate the effect of these parameters. These roughness elements were arranged with zigzag state with two distances of 4 k and 8 k (k is the height of roughness) in the floodplain. A Preston tube with an external diameter of 3 mm that equipped with dynamic pressure sensors was used to compute the shear stress. The Patel calibration curve was used in order to convert the difference between the static and dynamic pressure measured by the Preston tube to the shear stress values. The results showed that for the zigzag arrangement with the density of 4 k, the shear stress is reduced due to the high roughness density and the greater roughened area. In a rough bed, the shear stress in floodplain was significantly higher than smooth bed, and the stress distribution is such that it has descending trend from the main channel toward the wall of the floodplain. The shear stress increase for roughness with a spacing of 8 k is 22–36% higher than the similar hydraulic condition in a smooth bed and the shear stress for condition with the presence of a cylinder with D = 3 cm and roughness spacing of 8 k was 14–18% higher than the shear stress of bed without a cylinder and the same roughness density. The shear stress for condition of the presence of a cylinder with D = 6 cm and roughness spacing of 4 k is 24–30% more than the roughened plain with distances of 4 k.

Funder

university of tabriz

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flow Resistance and Stage-Discharge Relationships in Compound Channels with Composite Roughness;World Environmental and Water Resources Congress 2023;2023-05-18

2. Response of ancient landslide stability to a debris flow: a multi-hazard chain in China;Bulletin of Engineering Geology and the Environment;2022-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3