Abstract
AbstractSide weirs are utilized to regulate water surface and to control discharge and water elevation in rivers and channels. Here, the discharge coefficient for trapezoidal sharp-crested side weirs (TSCSW) and their affecting parameters are numerically investigated. To simulate the hydraulic and geometric characteristics of TSCSWs, three weir crest lengths of 15 cm, 20 cm and 30 cm with lengths of 20 cm, 30 cm and 40 cm and with two different sidewall slopes are utilized. The results show that for constant P/B (P: weir height, B: main channel width), the depth of flow along the channel and weir decreases as the crest length increases. Also, with increasing P/y1 ratio (P: weir height, y1: upstream flow depth), the discharge coefficient decreases for small crest lengths and increases for large crest lengths. The results show that for constant T/L ratio (T: passing flow width, L: side weir crest length), increasing the length, height and sidewall slope of a side weir will increase the discharge coefficient. It is observed that as the upstream Froude number increases for side weirs with longer crest lengths, the intensity of deviating flow and kinetic energy over the TSCSW will increase. Finally, some relations with high correlation factors are proposed for obtaining discharge coefficients using the dimensionless parameters of P/y1, T/L and Fr1. Based on proposed relations and sensitivity analysis, it is shown that T/L and P/y1 are the most effective parameters for reducing the discharge coefficient reduction.
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献