Efficient heavy metals and salts rejection using a novel modified polysulfone nanofiltration membrane

Author:

Gholami F.,Asadi A.,Zinatizadeh A. A.

Abstract

AbstractRecent research proclivity is about supplying water for drinking, urban and industrial applications which is recognized as one of the most significant challenges that threaten humanity. Giving its simplicity and high efficient yield, membrane technology has been preferred compared to other separation technologies for water and wastewater treatment. In the present research, KIT-6 (KIT: Korea Advanced Institute of Science and Technology) was functionalized by H-acid to improve hydrophilic functional groups on KIT-6 surface. Different characterization tests were performed to prove the insertion of H-acid on KIT-6 (H-KIT-6), e.g., FT-IR, XRD, zeta potential and FESEM analysis. Also, the effects of different loading of KIT-6 and H-KIT-6 on the morphology, characteristics and performance of Polysulfone (PSf) nanofiltration (NF) membranes were investigated. The maximum pure water flux (30.2 kg/m2 h), the lowest irreversible fouling ratio (3.96%) and the highest flux recovery ratio (96.04%) were obtained for the membrane embedded with 0.1 wt.% H-KIT-6 (optimum membrane). Also, the performance of the synthesized membranes was evaluated by rejection of four different salts (K2SO4, MgSO4, KCl and NaCl) and heavy metal ions (As3+ and Hg2+). The NF membrane embedded with 0.1 wt.% H-KIT-6 also presented the highest rejection of different salts and heavy metal ions (As3+ = 99.85% and Hg2+  = 99.27%) compared to the others. Finally, the performance of the optimum membrane to treat a real case of Gachsaran brackish water was assessed. As a result, by applying the optimum membrane, 565 mg/l, 28 mg/l and 27 mg/l of Ca2+, SO42− and Mg2+ were rejected, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3