Smart guanyl thiosemicarbazide functionalized dialdehyde cellulose for removal of heavy metal ions from aquatic solutions: adsorption characteristics and mechanism study

Author:

Akl Magda A.,El-Zeny Abdelrahman S.,Ismail Mohamed,Abdalla Mohamed,Abdelgelil Dina,Mostafa Aya G.

Abstract

AbstractIn recent years, facing the problem of improving environmental quality, cellulose and cellulose-based (nano) composites have received great attention as adsorbents. In this work, we report the modification and functionalization of cellulose by nitrogen- and sulfur-containing moieties through a three-steps process; native cellulose is first oxidized by potassium periodate (KIO4) to form dialdehyde cellulose (DAC), which then condenses with aminoguanidine and react with phenyl isothiocyanate to form 4-phenyl guanyl thiosemicarbazide dialdehyde cellulose (DAC@GuTSC). The prepared DAC@GuTSC is characterized by a number of techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), elemental analysis (EA), Brunauer–Emmett–Teller (BET) and thermogravimetric analysis (TGA). The prepared DAC@GuTSC adsorbent was used to remove Cu2+ Hg2+ and Pb2+ from aqueous solution and environmental water samples. The influence of various factors on the adsorption efficiency including pH, initial metal concentration, contact time, adsorbent dosage, temperature, and ions interfering with adsorption was investigated. Under optimal adsorption conditions, the adsorption capacity of Cu2+, Hg2+ and Pb2+ was 50, 94 and 55 mg g−1, respectively. The adsorption process is well described by the Langmuir model, and it was found to follow the pseudo-second-order kinetics model. The spontaneous and endothermic adsorption of Cu2+, Hg2+ and Pb2+ was confirmed by the calculated thermodynamic functions. The prepared DAC@GuTSC composite has been successfully applied to remove Cu2+, Hg2+ and Pb2+ from real water samples with recovery greater than 90% and relative standard deviation (RSD) less than 3%. The reasonable Cu2+, Hg2+ and Pb2+adsorption mechanism on the prepared DAC@GuTSC composite has been elucidated.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3