Author:
Rajalakshmi A. M.,Silambarasan T.,Dhandapani R.
Abstract
AbstractRecently, mass production of lipid along with heavy metal reduction is gaining momentum due to their cost-effective and greener approach towards waste water treatment. The purpose of this study is to investigate the small scale photo bioreactor treatment of tannery effluent using Chlorella sp. isolated form Yercaud lake, Tamil Nadu, India. The results showed a significant decrease in the heavy metals content in the tannery effluent after the treatment. Maximum reduction of the heavy metal Chromium (Cr) of 10.92 mg L−1 was recorded, followed by Cobalt (Co)-7.37 mg L−1, Nickel (Ni)-9.15 mg L−1, Cadmium (Cd)-8.48 mg L−1, Lead (Pb)-12.54 mg L−1, Zinc (Zn)-11.56 mg L−1 and Copper (Cu)-10.71 mg L−1 at the end of the 20th day of treatment. The microalgae, Chlorella sp. was analyzed for their biosorption ability and the maximum biosorption capacity (qmax) rate against heavy metals was 81.36, 70.53, 82.15, 63.29, 58.92, 83.43, 64.83 µg L−1 for Cr, Pb, Ni, Cd, Co, Zn, and Cu respectively. It matched with the Langmuir and Freundlich kinetics models. The maximum CO2 utilization was found to be 60.50% and maximum concentration of lipid, carbohydrate and protein was found to be 0.95 g L−1, 250 µg mL−1 and 160 µg mL−1, respectively. The presence of various groups such as hydroxyl, alkyl, carbonyl and carboxylic acids was confirmed using Fourier transform infrared analysis. Thus, the isolated microalgae showed good biosorption ability towards the various heavy metal pollutants from tannery waste water.
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Ajayan KV, Selvaraju M, Unnikannan P, Sruthi P (2015) Phycoremediation of tannery wastewater using microalgae Scenedesmus species. Int J Phytoremediation 17:907–916. https://doi.org/10.1080/15226514.2014.989313
2. American Public Health Association (2005) Standard methods for the examination of water and wastewater. APHA, Washington (DC)
3. Andersen RA (ed) (2005) Algal culturing techniques. Elsevier, Netherland
4. Chowdhury S, Mazumder MAJ, Al-Attas O, Husain T (2016) Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci Total Environ 569–570:476–488
5. Das C, Naseera K, Ram A et al (2017) Bioremediation of tannery wastewater by a salt-tolerant strain of Chlorella vulgaris. J Appl Phycol 29:235–243. https://doi.org/10.1007/s10811-016-0910-8
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献