Small scale photo bioreactor treatment of tannery wastewater, heavy metal biosorption and CO2 sequestration using microalga Chlorella sp.: a biodegradation approach

Author:

Rajalakshmi A. M.,Silambarasan T.,Dhandapani R.

Abstract

AbstractRecently, mass production of lipid along with heavy metal reduction is gaining momentum due to their cost-effective and greener approach towards waste water treatment. The purpose of this study is to investigate the small scale photo bioreactor treatment of tannery effluent using Chlorella sp. isolated form Yercaud lake, Tamil Nadu, India. The results showed a significant decrease in the heavy metals content in the tannery effluent after the treatment. Maximum reduction of the heavy metal Chromium (Cr) of 10.92 mg L−1 was recorded, followed by Cobalt (Co)-7.37 mg L−1, Nickel (Ni)-9.15 mg L−1, Cadmium (Cd)-8.48 mg L−1, Lead (Pb)-12.54 mg L−1, Zinc (Zn)-11.56 mg L−1 and Copper (Cu)-10.71 mg L−1 at the end of the 20th day of treatment. The microalgae, Chlorella sp. was analyzed for their biosorption ability and the maximum biosorption capacity (qmax) rate against heavy metals was 81.36, 70.53, 82.15, 63.29, 58.92, 83.43, 64.83 µg L−1 for Cr, Pb, Ni, Cd, Co, Zn, and Cu respectively. It matched with the Langmuir and Freundlich kinetics models. The maximum CO2 utilization was found to be 60.50% and maximum concentration of lipid, carbohydrate and protein was found to be 0.95 g L−1, 250 µg mL−1 and 160 µg mL−1, respectively. The presence of various groups such as hydroxyl, alkyl, carbonyl and carboxylic acids was confirmed using Fourier transform infrared analysis. Thus, the isolated microalgae showed good biosorption ability towards the various heavy metal pollutants from tannery waste water.

Publisher

Springer Science and Business Media LLC

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3