Impact of climate change-induced warming on groundwater temperatures and quality

Author:

Neidhardt HaraldORCID,Shao Wen

Abstract

AbstractThe impacts of climate change-induced warming on our ecosystems can no longer be neglected, but our understanding of consequences for groundwater ecosystems in general and groundwater quality in particular is alarmingly incomplete. In this review, we therefore provide an overview of the current state of knowledge related to the impact of global warming on our precious groundwater resources. Groundwater warming in shallow aquifers is closely associated with increasing average land surface temperatures and has already reached + 1 K compared to pe-industrial times. Until the end of the twenty-first century, temperature increases in local groundwater of up to + 10 K are possible. Monitoring data, laboratory and field experiments all provide evidence that such temperature increases are sufficient to substantially modify groundwater quality through numerous and interlinked biogeochemical processes, which we have summarized in a conceptual overview. Warming impacts on groundwater are highly site-specific and spatially heterogeneous, which complicates their assessment and prediction. Locally, shallow unconfined and nutrient-rich floodplain aquifers are most susceptible to warming-induced changes. Importantly, processes affecting water quality are not only modified by a long-term rise in groundwater temperatures, but also in the short-term during weather extremes, which is of great relevance for riverbank filtration. At the regional scale, aquifers in cold regions impacted by permafrost thawing are especially vulnerable to warming. As the majority of temperature-sensitive processes affecting groundwater quality are not or only very slowly reversable, we pressingly require comprehensive mechanistic understanding before it is too late to develop suitable countermeasures and management strategies.

Funder

Chinese Service Center for Scholarly Exchange

Eberhard Karls Universität Tübingen

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3