Assessing the groundwater quality of El Fahs aquifer (NE Tunisia) using multivariate statistical techniques and geostatistical modeling

Author:

Panagiotou Constantinos F.,Chekirbane Anis,Eliades Marinos,Papoutsa Christiana,Akylas Evangelos,Stylianou Marinos,Stathopoulos Nikolaos

Abstract

AbstractThis study is the first attempt to characterize the quality status of El Fahs aquifer by combining graphical tools, multivariate statistical techniques and traditional geostatistical methods. Water samples are collected from thirty-six observation wells during April 2016 to characterize the physicochemical properties of the aquifer. Subsequently, these samples are partitioned into three hydrochemically distinct water classes (i.e., C1, C2, and C3) using the K-means clustering method. Principal Component Analysis is used to reduce the dimensionality of the dataset prior performing the clustering computations, resulting in clusters of higher quality than the non-reduced case in terms of Silhouette coefficient. Piper diagram is used to display the chemical composition of the samples, revealing the dominant role of Mg–Ca–Cl water type for all three classes, whereas Sodium and Sulfate were found to be the second most important cations and anions respectively. Indicator kriging (IK) is used to identify the probability of occurrence of the hydrochemical classes beyond the sampling locations. It is found that Class 1, associated with fresh groundwater component, is most probable to occur at the central part of the plain, mainly due to the presence of a dense hydrological network, whereas Classes 2 (agricultural activities) and 3 (dissolution of evaporate geological formations) are expected to occur at the southern and northern regions respectively. IK also identified the regions associated with high levels of uncertainty, mostly occurring in a large portion of the northern area due to the absence of available hydrochemical information. The results showed that integration of graphical methods, multivariate statistical techniques and geostatistical modeling, is an efficient approach for characterizing the hydrochemical status of the aquifer system, to spatially optimize the groundwater monitoring well networks and quantify the uncertainty levels of the water classes in a systematic way.

Funder

HORIZON EUROPE Widening Participation and Strengthening the European Research Area

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3