Prediction of the sliding type and critical factor of safety in homogeneous finite slopes

Author:

Salmasi FarzinORCID,Pradhan Biswajeet,Nourani Bahram

Abstract

Abstract In this paper, the effect of soil material parameters including soil specific weight (γ), cohesion (C), angle of internal friction ($$\emptyset$$ ), and geometric parameter of slope including angle with the horizontal (β) for a constant slope height (H) on factor of safety (Fs) was investigated. Fs was considered in two scenarios: (1) slope with dry condition, and (2) with steady-state saturated condition that comprises water level drawdown circumstances. In addition, the type of slip circle was also investigated. For this purpose, the SLOPE/W software as a subgroup of Geo-Studio software was implemented. Results showed that decreasing of water table level and omitting the hydrostatic pressure on the slope consequently would result in safety factor decrement. Comparison of the plane and circular failure surfaces showed that plane failure method produced good results for near-vertical slopes only. Determination of slip type showed that for state (30° < β < 45°), the three types of failure circles (toe, slope or midpoint circle) may occur. For state (45° < β < 60°), two modes of failure may occur: midpoint circle and toe circle. For state (β > 60°), the mode of failure circle is only toe circle. Linear and nonlinear regression equations were obtained for estimation of slope safety factor.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3