Simulation of discharge coefficient of side weirs placed on convergent canals using modern self-adaptive extreme learning machine

Author:

Gharib Reza,Heydari Majeid,Kardar Saeid,Shabanlou Saeid

Abstract

AbstractSide weirs are broadly used in irrigation channels, drainage systems and sewage disposal canals for controlling and adjusting the flow in main channels. In this study, a new artificial intelligence model entitled “self-adaptive extreme learning machine” (SAELM) is developed for simulating the discharge coefficient of side weirs located upon rectangular channels. Also, the Monte Carlo simulations are implemented for assessing the abilities of the numerical models. It should be noted that the k-fold cross-validation approach is used for validating the results obtained from the numerical models. Based on the parameters affecting the discharge coefficient, six artificial intelligence models are defined. The examination of the numerical models exhibits that such models simulate the discharge coefficient valued with acceptable accuracy. For instance, mean absolute error and root mean square error for the superior model are computed 0.022 and 0.027, respectively. The best SAELM model predicts the discharge coefficient values in terms of Froude number (Fd), ratio of the side weir height to the downstream depth (w/hd), ratio of the channel width at downstream to the downstream depth (bd/hd) and ratio of the side weir length to the downstream depth (L/hd). Based on the sensitivity analysis results, the Froude number of the side weir downstream is identified as the most influencing input parameter. Lastly, a matrix is presented to estimate the discharge coefficient of side weirs on convergent channels.

Publisher

Springer Science and Business Media LLC

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3