Boosting ensembles for estimation of discharge coefficient and through flow discharge in broad-crested gabion weirs

Author:

Azma Aliasghar,Tavakol Sadrabadi Mohammad,Liu Yakun,Azma Masoumeh,Zhang Di,Cao Ze,Li Zhuoyue

Abstract

AbstractGabion weirs are environment-friendly structures widely used for irrigation and drainage network purposes. These structures' hydraulic performance is fundamentally different from solid weirs' due to their porosity and the existence of a through-flow discharge. This paper investigates the reliability and suitability of a number of Machine learning models for estimation of hydraulic performance of gabion weirs.  Generally, three different Boosting ensemble models, including Gradient Boosting, XGBoost, and CatBoost, are compared to the well-known Random Forest and a Stacked Regression model, with respect to their accuracy in prediction of the discharge coefficient and through-flow discharge ratio of gabion weirs in free flow conditions. The Bayesian optimization approach is used to fine-tune model hyper-parameters automatically. Recursive feature elimination analysis is also performed to find optimum combination of features for each model. Results indicate that the CatBoost model has outperformed other models in terms of estimating the through flow discharge ratio (Qin/Qt) with R2 = 0.982, while both XGBoost and CatBoost models have shown close performance in terms of estimating the discharge coefficient (Cd) with R2 of CatBoost equal to 0.994 and R2 of XGBoost equal to 0.992. Weakest results were also produced by Decision tree regressor with R2 = 0.821 and 0.865 for estimation of Cd and Qin/Qt values.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3