Abstract
AbstractThis present work is a part of the liquid discharges treatment topic by studying the removal performance for thermotolerant coliforms (FC) and fecal streptococci (F.Strep) by a local natural light green clay from Kenadsa (Bechar-Algeria) under continuous adsorption processes in a fixed-bed column. The study estimated the clay adsorbing efficiency by the adsorption technique for bacteria contaminating the dairy effluent by determining the bacterial load before and after treatment. The mean log counts per 100 ml for FC and F.Strep were assessed by MPN method on liquid medium. The clay material characterizations were made through X-ray diffraction, X fluorescence spectrometry and Fourier transform infrared spectroscopy analysis. Besides, some parameters were estimated such as the breakthrough time tb (clay filter breakdown); the amount of the contaminating bacteria that was removed at the breakthrough time Xb and the exhaustion of disinfection capacity Xe; the total amount of contaminating bacteria flowing through the column Xtotal; and the total removal efficiency (Y). According to the XRD, XRF and FTIR results, the predominant mineral constituents were silicon dioxide, aluminum oxide, ferric oxide and magnesium oxide with rates of 59,44; 18,09; 7,79; and 3,87%, respectively, and hence, their classification among non-swelling clay minerals, illite is the major mineral group of this material. The results of the bacteriological analysis of raw dairy effluents showed an average bacterial load of 3,88 Log10 and 4,1 Log10 CFU/100 mL for FC and F.Strep, respectively, exceeding the thresholds set by the national and the international regulations. The results of the dairy effluents treated by the tested material have shown that the used clay has a relatively high adsorption property for the clay fixed-bed system (3 cm of bed height), expressed by a total removed efficiency Y (%) of FC and F.Strep used to evaluate the column performance ranging from 55 to 84%. It gives a higher log removal for FC and F.Strep (0.98–1.65 Log10) reported from the first adsorption process, and a breakthrough time ranged from 100 to 250 min, which was inversely proportional to the initial bacterial load of discharges and also linked to the nature of the bacterial contaminants. When the breakthrough occurs earlier, the column service life will be shortened. For the studied parameters, the results of treated effluent complied with national and WHO regulations for unrestricted agricultural irrigation, otherwise, as authorized effluents to be discharged into nature without risks. These preliminary results are very promising at laboratory scale as an innovative green technology, treatment method respecting the environment and opens up prospects for the future, where the modification or the optimization of operating conditions such as the bed height of the fixed bed for adsorption, the volumetric flow rate or the clay structure like the particle size distribution of the adsorbents, known as one of the adsorbent classes endowed with an antimicrobial property, can improve the column performance, and further, the removal or even more the disinfection process by adsorption method.
Publisher
Springer Science and Business Media LLC
Reference72 articles.
1. AFNOR T 90–413 (1985) Essais des eaux-Recherche et dénombrement des coliformes et des coliformes thermotolérants-Méthode générale par ensemencement en milieu liquide (NPP). Association française de normalisation
2. Ahmad WIA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Coll Surf B Biointerfaces, Coll Surf b 107(2013):227–234. https://doi.org/10.1016/j.colsurfb.2013.02.004
3. Akhigbe L, Ouki S, Saroj D (2016) Disinfection and removal performance for Escherichia coli and heavy metals by silver-modified zeolite in a fixed bed column. Chem Eng J 295:92–98. https://doi.org/10.1016/j.cej.2016.03.020
4. Alimova A, Katz A, Steiner N, Rudolph E, Wei H, Steiner JC, Gottlieb P (2009) Bacteria-clay interaction: structural changes in smectite induced during biofilm formation. Clay Clay Miner 57(2):205–212. https://doi.org/10.1346/CCMN.2009.0570207
5. Allègre J (2012) L’argile : un décontaminant universel (dossier drainage & détox). Biocontact, No 221:66
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献