Novel hybrid models to enhance the efficiency of groundwater potentiality model

Author:

Talukdar SwapanORCID,Mallick Javed,Sarkar Showmitra Kumar,Roy Sujit Kumar,Islam Abu Reza Md. Towfiqul,Praveen Bushra,Naikoo Mohd Waseem,Rahman Atiqur,Sobnam Mohoua

Abstract

AbstractThe present study aimed to create novel hybrid models to produce groundwater potentiality models (GWP) in the Teesta River basin of Bangladesh. Six ensemble machine learning (EML) algorithms, such as random forest (RF), random subspace, dagging, bagging, naïve Bayes tree (NBT), and stacking, coupled with fuzzy logic (FL) models and a ROC-based weighting approach have been used for creating hybrid models integrated GWP. The GWP was then verified using both parametric and nonparametric receiver operating characteristic curves (ROC), such as the empirical ROC (eROC) and the binormal ROC curve (bROC). We conducted an RF-based sensitivity analysis to compute the relevancy of the conditioning variables for GWP modeling. The very high and high groundwater potential regions were predicted as 831–1200 km2 and 521–680 km2 areas based on six EML models. Based on the area under the curve of the ROC, the NBT (eROC: 0.892; bROC: 0.928) model outperforms rest of the models. Six GPMs were considered variables for the next step and turned into crisp fuzzy layers using the fuzzy membership function, and the ROC-based weighting approach. Subsequently four fuzzy logic operators were used to assimilate the crisp fuzzy layers, including AND, OR, GAMMA0.8, and GAMMA 0.9, as well as GAMMA0.9. Thus, we created four hybrid models using FL model. The results of the eROC and bROC curve showed that GAMMA 0.9 operator outperformed other fuzzy operators-based GPMs in terms of accuracy. According to the validation outcomes, four hybrid models outperformed six EML models in terms of performance. The present study will aid in enhancing the efficiency of GPMs in preparing viable planning for groundwater management.

Funder

Deanship of Scientific Research, King Khalid University

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3