Analysis of physicochemical water quality parameters for streams under agricultural, urban and forest land-use types: in the case of gilgel Gibe catchment, Southwest Ethiopia

Author:

Bakure Berhanu ZawudeORCID,Fikadu Samuel,Malu Asgdom

Abstract

Abstract Streams draining to Gilgel Gibe catchment cross agricultural and urban land uses receiving a different pollutant that challenges water quality. A total of 21 sampling sites were selected from seven streams of agricultural (n = 3), urban (n = 3) and forest (n = 1) land-use types. Composite samples were collected from upstream, middle and downstream of all land-use types. Twenty-three physicochemical parameters were measured from each sampling site. Temperature, DO, pH, EC, turbidity, width, depth, current velocity and discharge were measured onsite. Two milliliters of unfiltered water samples was collected from every site for laboratory analysis. Mean of NO3-N was highest in agricultural streams than forested and urban streams. In contrast, mean of SRP, NH4-N and COD and BOD5 concentration was greater in urban streams followed by agricultural streams, whereas forest streams are lowest. Concentrations of nutrients, EC and turbidity were recorded in increasing manner across land-use gradient from forested to agricultural and urban streams. The analysis of one-way ANOVA showed that all physicochemical parameters were significantly different among all sites with different land-use types (P < 0.05), except for water temperature (one-way ANOVA: F = 0.987, P = 0.494). NMDS and cluster analyses have discriminated the sites into three groups of land-use types. Then, we conclude that water quality of urban stream is highly impaired than agricultural streams, whereas forested streams have better water quality. Therefore, stream restoration projects, reforestation, conservation of riparian vegetation appropriate waste disposal need to be encouraged in the study area for sustainable management of freshwater resources.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3