‘Off–On’ determination of lead (Pb2+) and fluoride (F−) ion in fish and wastewater samples using N, S co-doped carbon quantum dots (N, S-CQDs)

Author:

Aladesuyi Olanrewaju Aladesanmi,Oluwafemi Oluwatobi SamuelORCID

Abstract

AbstractLead is a global priority pollutant. Its presence in aquatic systems is harmful to the human health. Fluoride is essential to the human body, especially in dental health. However, excess fluoride in the body can lead to serious health concerns. Therefore, a simple approach to monitoring lead and fluoride in environmental samples is paramount. In this study, we synthesized N and S co-doped carbon quantum dots under the hydrothermal method by employing citric acid, glutamine, and sodium sulphide (Na2S) as precursors. Characterization of the developed nanosensor was carried out using Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) spectrophotometer, ultraviolet–visible spectroscopy (UV–Vis), and X-ray diffraction (XRD). The as-prepared nanosensor is spherical with an average particle diameter of 3.45 ± 0.86 nm and emits light in the green region of the spectrum. This material was employed as an ‘on–off’ and ‘off–on’ fluorescent sensor to determine Pb2+ and F rapidly and selectively. The fluorescence was quenched (turned off) in the presence of Pb2+ because of the strong interaction between Pb2+ ions and the surface functional groups of the as-synthesized material. Subsequently, the quenched fluorescence of the N, S-CQDs + Pb2+ system was restored (turned on) upon the introduction of F ions, owing to the formation of ionic bonds between Pb2+ and F. The N S-CQDs were selective towards Pb2+. At the same time, the N, S-CQDs + Pb2+ system exhibited selectivity towards F ions amidst other ions with low detection limits (LODs) of 13.35 nM and 43.17 nM for Pb2+ and F, respectively. The dynamic quenching mechanism was suggested based on the absorption spectra and lifetime results. Satisfied recoveries of 89.30–116.40% for Pb2+ and 90.22–115.05% for F- (RSD < 5) were obtained in practical samples of wastewater and fish. We believe that the as-synthesized N S-CQDs can effectively serve as reliable, accurate, and swift nanosensor for detecting Pb2+ and F in environmental samples.

Funder

National research foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3