Author:
Brahmi Lamia,Kaouah Farida,Boumaza Salim,Trari Mohamed
Abstract
Abstract
In the present study, wild date stones (WDS) were used as a novel and sustainable precursor for high-quality activated carbon preparation to be applied for the removal of Acid Blue 25 dye (AB25) from synthetic water. The carbonization temperature of the raw material was selected at 850 °C on the basis of thermo-gravimetric analysis. The adsorbents were characterized by the BET method, Fourier transform infrared spectroscopy, and scanning electron microscopy. The results indicated that the activated carbon presents a high specific surface area (610.84 m2 g−1) and a pore volume (0.224 cm3 g−1) compared with the natural material. Based on the central composite design, the effect of different parameters such as the biomass dose, initial dye concentration, contact time and temperature was optimized and the optimal removal of AB25 (99.61%) was achieved for AB25 concentration of 100 mg L−1 and an adsorbent dose of 0.8 g L−1, at 45 °C after 120 min. The kinetic studies indicated that the pseudo-second-order model was appropriately applied for the adsorption kinetic of AB25 onto wild date stones activated carbon. The intraparticle diffusion model is not the only controlling step, and other mechanisms may be involved in the adsorption process. The Langmuir isotherm provided the best fit with a high correlation coefficient (R2) of 0.993 and a maximum monolayer adsorption capacity of 181.59 mg g−1.
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology
Reference65 articles.
1. Aljeboree A, Alshirifi AN, Alkaim AF (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 10:3381–3393
2. Amin NK (2009) Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. J Hazard Mater 52:62–165
3. Anithaa T, Kumar PS, Kumar KS (2016) Synthesis of nano-sized chitosan blended polyvinyl alcohol for the removal of Eosin Yellow dye from aqueous solution. J Water Process Eng 13:127–136
4. Arulkumar M, Sathishkumar P, Palvannan T (2011) Optimization of Orange G dye adsorption by activated carbon of the spesiapopulnea pods using response surface methodology. J Hazard Mater 186:827–834
5. Asfaram A, Ghaedi M, Hajati S, Rezaeinejad M, Goudarzi A, Purkait MK (2015) Rapid removal of Auramine-O and Methylene blue by ZnS: Cu nanoparticles loaded on activated carbon: a response surface methodology approach. J Taiwan Inst Chem Eng 53:80–91
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献