Exploring the probing capacities of MSA capped CdTe semiconductor quantum dots as optical chemsensors via analytical and isotherms modeling for selective Hg2+ detection

Author:

Ajroud Mohamed,Abdella Faiza I. A.,Alanazi Tahani Y. A.,Helaoui Meryem,Boudriga SarraORCID

Abstract

AbstractHeavy metal ions bioaccumulation can cause severe damage to environment and human health. Hence, the development of an effective detection assay of trace amounts of these ions is of great importance. Here, CdTe quantum dots (QDs) capped with mercaptosuccinic acid (MSA) ligands have been synthesized in aqueous solution with significant stability and good fluorescence properties. Photophysical characterization was performed using FTIR, XRD, HRTEM and UV–Vis. Absorption, PL and PLRT techniques, seeking their subsequent application as fluorescent probes for metal cations. CdTe-MSA QDs showed selective sensitivity toward Hg2+ ions by monitoring quantitative fluorescence quenching with increasing analyte content. Under optimal conditions, the linear range for the detection was 0.2–6 μM with a detection limit of 0.05 μM. According to the Stern–Volmer model, it can be inferred that a static quenching mechanism via Hg2+ selective binding to MSA carboxylate groups is operating with electron transfer process. Excess of mercuric ions further decreased and red shifted the fluorescence possibly due to competitive cation exchanges. To further explain the corresponding ligation mechanisms, adsorption behavior study was conducted via several isotherms as well as statistical physics models. The pseudo-first-order model can describe the adsorption kinetics of Hg2+ on CdTe-MSA QDs more accurately and the experimental data fitted well the Langmuir isotherm model of monolayer adsorption on homogeneous surface. Furthermore, this spontaneous process conforms to the Hill model as a physisorption with an adsorption energy of 32 kJ.mol−1 associated with the electrostatic interactions and hydrogen bonding. The developed system was assayed in the Hg2+ trace amount detection in real tap water and showed satisfactory accuracy performance meeting analytical requirements. The relevant results demonstrated that CdTe-MSA QDs could be deployed as promising Hg2+ fluorescent chemosensing system with high sensitivity and selectivity over wide linear detection range that have great potential for real water samples analysis.

Funder

Deputy for Research & Innovation, Ministry of Education through Initiative of Institutional Funding at University of Ha’il—Saudi Arabia through project number IFP-22 083.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3