Abstract
AbstractThe COVID-19 pandemic has led to a significant increase in the global use of face masks, with reports indicating that approximately 129 billion people worldwide use them every month. Many masks contain MPs, which can pose environmental and health risks. The aim of this study is to assess the properties of MPs that are released from ten different mask brands. The masks that were selected were weighed, immersed in deionized distilled water, stirred, and MPs that were released into the water were collected using a cellulose ester membrane. The collected MPs were then analyzed using an optical microscope to observe their shape and color. The results showed that the rates of MPs released from N95 masks, surgical masks, and 3D masks were 54, 23, and 23%, respectively. The N95 mask had the highest percentage of MPs due to its heavy weight. The observed shapes of MPs, in terms of abundance percentage, were filamentous > spherical > irregular > fragmented. Furthermore, the majority of MPs were found to be transparent or black in color. This study offers valuable insights into the mechanisms behind the release of MPs from disposable face masks, shedding light on the critical issue of microplastic pollution resulting from mask waste.
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献