Theoretical analysis and parametric investigation of an innovative helical air gap membrane desalination system

Author:

Shahu Vandita T.ORCID,Thombre Shashikant B.

Abstract

AbstractA helical air gap membrane desalination (HAGMD) system is designed in the present study. The condenser is designed as a cylindrical shape with helical fins machined on the outer surface of a hollow copper condenser. A detailed theoretical model, studying heat and mass transfer in the HAGMD module, was developed. The theoretical model for a cylindrical system with fins is developed for the first time and is unique in the MD literature. Experimentation was carried out to examine the behavior of the HAGMD module under diverse design and operating conditions. The effect of cold flow rate, feed flow rate, feed temperature, the height of fins, the number of fins, and the length of the module is determined on the performance of the HAGMD system. Permeate flux and gained output ratio (GOR) were considered as the performance indicators of the system. Results showed that permeate flux increases with cold flow rate, feed temperature, feed flow rate, as well as number of fins, while the increase in height of fins negatively affects the flux. Theoretical model and experimental results are found to be in excellent agreement with only 6.7% of error which shows that the present theoretical model is excellent to predict the performance of any HAGMD system. For similar design parameters, the average flux increased by 135% for the finned HAGMD module, with 35 fins over the one with that only for 1 fin. Maximum experimental distillate flux is found to be 20 kg/m2 hr, and GOR is found to be 0.75.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3