4E investigation of solar-driven RO and RRO osmotic desalination systems from water, energy, and environment relevance perspective: a comparative approach

Author:

Naminezhad Alireza,Mehregan Mahmood

Abstract

AbstractIn this paper, two osmotic desalination systems, namely, plug reverse osmosis (RO) and recirculation reverse osmosis (RRO) systems integrated with solar and organic Rankine cycle (ORC), have been presented. These systems are modeled and optimized from energy, exergy, economic, and environmental perspectives. The objective functions are the concentration disposal index (CDI) and unit cost of the product (fresh water) (UPC). The results show that the RO cycle has an optimal configuration grounded on max (CDI) and min (UPC). At identical UPC, the environmental effects of the RO system were less than those of the RRO. This is attributed to higher recovery with increasing temperature of discharged water into the sea in a smaller area and at a higher rate. For the RO system, the values for CDI, exergy efficiency, and fresh water production are 0.193, 45.6%, and 13.1 m3/h for R245ca fluid. Also, the share of RO and RRO in the total TAC costs is 19.44% and 17.33%, respectively. The R245ca working fluid is selected for both cycles, which is more productive than the other fluids. The results show that more than 50% recovery is achieved for the SW30HR-320 membrane at the optimum for the RO system.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3