Ammoniacal nitrogen removal by Eichhornia crassipes-based phytoremediation: process optimization using response surface methodology

Author:

Ting W. H. T.,Tan I. A. W.,Salleh S. F.,Abdul Wahab N.

Abstract

AbstractEutrophication is a serious environmental issue that needs urgent concern. There is necessity to treat wastewater with high ammoniacal nitrogen (AN) concentration to the permissible standard limit to protect the aquatic ecosystem. This study investigated the optimum condition for AN removal from wastewater using Eichhornia crassipes-based phytoremediation process. Face-centered central composite design (CCD) was employed as the experimental design, in which four operational variables including pH (4–10), retention time (2–14 days), macrophyte density (5–30 g/L) and salinity (0–5 g NaCl/L) were involved in the study, while five responses were investigated, namely AN removal efficiency (Y1), fresh biomass growth (Y2), COD (Y3), BOD (Y4) and TSS (Y5). AN removal was the main focus in this study. Through numerical optimization, the highest AN removal efficiency of 77.48% (initial AN concentration = 40 mg/L) was obtained at the following optimum condition: pH 8.51, retention time of 8.47 days, macrophyte density of 21.39 g/L and salinity of 0 g NaCl/L. The values predicted from the models agreed satisfactorily with the experimental values, which implied that response surface methodology was reliable and practical for experimental design developed using optimization of the phytoremediation process. The validation experiment using real semiconductor effluent further supported the high potential of the E. crassipes-based phytoremediation system to remove AN and other organic pollutants in this industrial effluent under optimal condition.

Funder

Ministry of Higher Education, Malaysia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3