Enhanced desalination performance of capacitive deionization using ZIF-8/Graphene nanocomposite electrode

Author:

Kamali Z.,Khashehchi M.ORCID,Zarafshan P.,Pipelzadeh E.

Abstract

AbstractCapacitive deionization (CDI) is greatly recommended as a desalination process for its eco-friendly and low energy consuming technique in removing salt ions (NaCl) from salty water. This study reports a Zeolitic Imidazolate Framework-8/Graphene (ZIF-8/G) nanocomposite modified electrode performance in CDI technology. Based on its promising features, like large surface area and good electric conductivity, graphene is an adequate electrode. Interestingly, ZIF-8 is homogeneously well intergrown on the surface of graphene. Hence, electrochemical performance such as electrical conductivity and cyclic voltammetry in CDI unit were examined, and characteristics like the morphology, identification and determining the structure of the prepared materials were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR). As an adsorbent, the prepared ZIF-8/G nanocomposite exhibits the best adsorption capacity about 141.6037 F/g higher than each individually and great electrical conductivity about 672 μs/cm. The high adsorption specific capacity and good reusability of the ZIF-8/G nanocomposite suggests that it can be applied as novel adsorbents showing attractive potential for the CDI technique.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3