Numerical modeling of hydraulic jumps at negative steps to improve energy dissipation in stilling basins

Author:

Macián-Pérez Juan FranciscoORCID,García-Bartual Rafael,López-Jiménez P. Amparo,Vallés-Morán Francisco José

Abstract

AbstractThe performance of stilling basins including a negative step was analyzed addressing its effect on the energy dissipation efficiency, dimensions and structural properties of the hydraulic jump, streambed pressures and pressure fluctuations. Six different cases were simulated, considering two possible relative heights for the step and three possible Froude numbers. The results show that the step yields to lower subcritical depths, allowing smaller basin dimensions. Nevertheless, it tends to slightly increase the roller length of the jump. Concerning the relative energy dissipation, results confirm the improvement derived from the step presence. The internal flow occurring in the jump was also analyzed, and more specifically the subzones generated upstream and downstream the impingement point. The results prove the contribution of the negative step in the stabilization of hydraulic jumps in the stilling basin. In particular, a general decrease of the streambed pressure is observed. In addition, pressure fluctuations are significantly reduced due to the negative step size influence on the hydraulic jump. Furthermore, the effectiveness of the computational fluid dynamics (CFD) techniques to simulate stilling basin flows and to adequately characterize the hydraulic jump performance was confirmed.

Funder

Agencia Estatal de Investigación

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3