Modelling nitrogen transformation in the Lake Bunyonyi ecosystem, South-Western Uganda

Author:

Saturday AlexORCID,Lyimo Thomas J.,Machiwa John,Pamba Siajali

Abstract

AbstractLake Bunyonyi is one of the major resources of social-economic potential in the districts of Rubanda and Kabale, South-Western Uganda. The lake’s sub-catchment faces environmental problems because of intensive agriculture, settlement, business and tourism activities, which consequently cause pollution of water in the lake’s system. This study, therefore, intended to determine the processes that govern nitrogen dynamism using a numerical model that takes into account various processes in the system using STELLA® 8.1.1 software. From the model simulation, it was found that mineralization, microbial uptake and nitrification were the major processes governing nitrogen transformation in the water phase, accounting for 47.8% (0.49 g/d m−2), 44.2% (0.45 g/d m−2), and 7.8% (0.05 g/d m−2), respectively. The developed model predicted reasonably well the behaviour of the lake evidenced by the validation results of observed and simulated data that showed good linear regression coefficients (R2) of organic nitrogen (0.48), ammonia–nitrogen (0.68), and nitrate–nitrogen (0.61). The model has proven suitable for application on lakes with characteristics similar to that of Lake Bunyonyi. The study recommended that a compressive investigation that puts into consideration all the possible sources of nutrient and water inflow into the lake system be done on Lake Bunyonyi.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3