Groundwater delineation for sustainable improvement and development aided by GIS, AHP, and MIF techniques

Author:

Ehsan Muhsan,Shabbir Haider,Al-Quraishi Ayad M. Fadhil,Al-Ansari NadhirORCID,Ahmad Zulfiqar,Abdelrahman Kamal,Sohail Muhammad Tayyab,Manzoor Zaira,Shafi Ahsan,Elbeltagi Ahmed

Abstract

AbstractExploration of groundwater is an integral part of viable resource growth for society, economy, and irrigation. However, uncontrolled utilization is mainly reported in urban and industries due to the increasing demand for water in semi-arid and arid regions of the world. In the background, groundwater demarcation for potential areas is vital in meeting necessary demand. The current study applied an integrated method comprising the analytical hierarchy process (AHP), multiple influence factors (MIF), combined with a linear regression curve and observatory well data for groundwater prospects mapping. Thematic maps such as flow direction, flow accumulation, elevation map, land use land cover, slope, soil texture, hill shade, geomorphology, normalized vegetation index, and groundwater depth map were generated utilizing remote sensing techniques. The relative weight of each parameter was estimated and then assigned to major and minor parameters. Potential zones for groundwater were classified into five classes, namely very good, good, moderate, poor, and very poor, based on AHP and MIF methods. A spatially explicit sensitivity and uncertainty analysis method to a GIS-based multi-criteria groundwater potential zone model is presented in this research. The study addressed a flaw in the way groundwater potential mapping results are typically presented in GIS-based multi-criteria decision analysis studies, where discrete class outputs are used without any assessment of their certainty with respect to variations in criteria weighting, which is one of the main contributors to output uncertainty. The study region is categorized based on inferred results as very poor, poor, marginal, and very good in potential ground quality 3.04 km2 is considered extremely poor, 3.33 km2 is considered poor, 64.42 km2 is considered very good, and 85.84 km2 is considered marginal zones, which shows reliable and potential implementation. The outcomes of AHP and MIF were validated by linear regression curve and actual water table in a study area. The study results help to formulate the potential demarcation of groundwater zones for future sustainable planning and development of groundwater sources. This study may be helpful to provide a cost-effective solution to water resources crises. The current study finding may be helpful for decision-makers and administrative professionals for sustainable management of groundwater resources for present and future demands.

Funder

King Saud University

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3