Electro-Fenton method for the removal of Malachite Green: effect of operational parameters

Author:

Teymori Maryam,Khorsandi Hassan,Aghapour Ali Ahmad,Jafari Seyed Javad,Maleki Ramin

Abstract

AbstractThis study aims to evaluate the degradation and mineralization of Malachite Green (MG) in an electro-Fenton process (EFP). We studied the influence of several important parameters including solution pH (2–11), current density (0–20 mA/cm2), H2O2 concentration (0–200 mg/L) and MG concentrations (200, 600, 1000, 1500, 2000, 3000 mg/L) at different reaction time (2.5–30 min). The intermediates produced during the degradation were determined by GC–MS. The optimum pH, current density and H2O2 concentration were found to be approximately 3, 10 mA/cm2 and 50 mg/L, respectively. It was concluded that acidic pH was required to increase the efficiency of the EFP. At optimum conditions and a reaction time of 15 min, MG was completely removed without any significant variation in the corresponding maximum wavelengths or new absorption bands. Due to formation of intermediates, almost all the organic compounds were completely mineralized (95.3%) to CO2 and water at reaction time of 30 min. Results indicated the effect of hydroxyl radical (·OH) on MG degradation is greater than that of superoxide radical scavenger ($$ {\text{O}}_{2}^{ \cdot - } $$O2·-). The results showed that the degradation process of MG followed pseudo-first-order kinetic model and the treatment time required in EFP was 4.6 times lower than ECP. Furthermore, the results showed that EFP was an extremely efficient process for degradation and mineralization of a high concentration of MG (1000 mg/L) at a short reaction time (30 min).

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3