Abstract
AbstractTo address the prominent problem of declining runoff in many rivers around the world, studying the law of runoff change and attribution analysis is very important for the planning and management of watershed water resources and has practical significance for solving the imbalance between supply and demand of watershed water resources and maintaining the healthy development of rivers. Three commonly used coupled water-energy balance equations based on Budyko hypothesis are selected to estimate the elasticity coefficient of runoff change to each driving factor, and the contribution rate of different factors to runoff change in the study area is quantified by the total differential method and the complementary method, respectively. The results show that the runoff of Huangfuchuan River basin showed a significant decreasing trend from 1954 to 2015, and the runoff mutation points were 1979 and 1996; in the alteration period I (1979–1996), precipitation was the main factor leading to the runoff reduction in Huangfuchuan River basin, followed by the influence of underlying surface; the contribution rate of underlying surface to runoff alterations ranged from 63.7% to 65.46%; the impact of potential evapotranspiration was slightly smaller. In the alteration period II (1997–2015), the underlying surface played a dominant role in runoff reduction of Huangfuchuan River basin. The contribution rate of the underlying surface to runoff change ranged from 80.21% to 86.34%, followed by precipitation, and the potential evapotranspiration had the least impact. The impact of human activities on the whole watershed increased with the passage of time. The land use change, the overall increase of NDVI (vegetation cover) and the construction of water conservation projects are important reasons for the reduction of runoff in Huangfuchuan River basin.
Funder
Project of key science and technology of the Henan provincey
Henan province university scientific and technological innovation team
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献