Development of predictive model for the fixed-bed column reactor

Author:

Singh Jyoti,Kumaresan Santhosh Kumar,Swaroop Sarvanshi,Mishra Vishal

Abstract

AbstractThe present study aims at development of a mathematical model for the fixed-bed column adsorption that relates the reactor parameters with the breakthrough curve. Effects of operating parameters like bed height, flow rate, initial adsorbate concentration on the adsorption were investigated by using various breakthrough curves. The arbitrary constants of the developed model were found to be dependent on the operating parameters of the breakthrough kinetics. The proposed model showed incredible results (Breakthrough Curve R2 > 0.98) for the referenced data. The flexibility of this model can be seen from the fact that the coefficients of parameters in the Arbitrary Constants Relation for the adsorbate–adsorbent pair are required to be determined only once and can be used repeatedly considering no change in any external factors affecting the working of the adsorbent. As the general adsorption curve follows a typical sigmoid curve, once the Arbitrary Constants Relations are known, the reactor can be optimized by selecting the accurate values of the reactor parameter leading to a slower Ct/Co growth with respect to time. The information about the saturation limit of adsorbent can be used to predict attainment of the saturation limit. The proposed model will reduce the significant number of complicated experiments required to optimize the reactor. The model can also determine the time after which effluent concentration becomes 63.21% of the influent adsorbate concentration without any experimentation by using the Arbitrary Constants Relation, which is of great industrial importance.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

Reference21 articles.

1. Al-Rashdi B, Somerfield C, Hilal N (2011) Heavy metals removal using adsorption and nanofiltration techniques. Sep Purif Rev 40:209–259

2. Arbabi M, Golshani N (2016) Removal of copper ions Cu (II) from industrial wastewater: a review of removal methods. Int J Epidemiol Res 3:283–293

3. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799

4. Chu KH (2020) Breakthrough curve analysis by simplistic models of fixed bed adsorption: in defense of the century-old Bohart-Adams model. Chem Eng J 380:122513

5. Field MS (2002) The QTRACER2 program for tracer-breakthrough curve analysis for tracer tests in karstic aquifers and other hydrologic systems. National Center for Environmental Assessment--Washington Office, Office of Research and Development, US Environmental Protection Agency

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3